0%

力扣每日一题2021/8/21

题目:204. 计数质数

统计所有小于非负整数 n 的质数的数量。

难度:简单

示例 1:

输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。

示例 2:

输入:n = 0
输出:0

示例 3:

输入:n = 1
输出:0

提示:

  • 0 <= n <= 5 * 10^6

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-primes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路

  1. 厄拉多塞筛法(埃氏筛)
  2. 线性筛

官方解题代码

厄拉多塞筛法(埃氏筛)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public int countPrimes(int n) {
int[] isPrime = new int[n];
Arrays.fill(isPrime, 1);
int ans = 0;
for (int i = 2; i < n; ++i) {
if (isPrime[i] == 1) {
ans += 1;
if ((long) i * i < n) {
for (int j = i * i; j < n; j += i) {
isPrime[j] = 0;
}
}
}
}
return ans;
}
}

线性筛

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public int countPrimes(int n) {
List<Integer> primes = new ArrayList<Integer>();
int[] isPrime = new int[n];
Arrays.fill(isPrime, 1);
for (int i = 2; i < n; ++i) {
if (isPrime[i] == 1) {
primes.add(i);
}
for (int j = 0; j < primes.size() && i * primes.get(j) < n; ++j) {
isPrime[i * primes.get(j)] = 0;
if (i % primes.get(j) == 0) {
break;
}
}
}
return primes.size();
}
}