题目:4. 寻找两个正序数组的中位数
给定两个大小分别为 m
和 n
的正序(从小到大)数组 nums1
和 nums2
。请你找出并返回这两个正序数组的 中位数 。
难度:困难
示例 1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:
输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
示例 3:
输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000
示例 4:
输入:nums1 = [], nums2 = [1]
输出:1.00000
示例 5:
输入:nums1 = [2], nums2 = []
输出:2.00000
提示:
- nums1.length == m
- nums2.length == n
- 0 <= m <= 1000
- 0 <= n <= 1000
- 1 <= m + n <= 2000
- -10^6 <= nums1[i], nums2[i] <= 10^6
进阶:你能设计一个时间复杂度为 O(log (m+n))
的算法解决此问题吗?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
- 排序合并同时进行
- 合并之后排序
- 二分查找
- 划分数组
解题代码
排序合并同时进行
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| class Solution { public double findMedianSortedArrays(int[] nums1, int[] nums2) { List<Integer> list = new ArrayList<>(); int length = Math.max(nums1.length, nums2.length); int p1 = 0, p2 = 0; while (p1 < nums1.length || p2 < nums2.length){ if (p1 == nums1.length){ list.add(nums2[p2++]); }else if (p2 == nums2.length){ list.add(nums1[p1++]); }else if (nums1[p1] < nums2[p2]){ list.add(nums1[p1++]); }else { list.add(nums2[p2++]); } } if (list.size() % 2 == 0){ return (double)(list.get(list.size() / 2) + list.get(list.size() / 2 - 1)) / 2; } return list.get(list.size() / 2); } }
|
合并之后排序
1 2 3 4 5 6 7 8 9 10 11 12 13
| class Solution { public double findMedianSortedArrays(int[] nums1, int[] nums2) { int[] res = new int[nums1.length + nums2.length]; for (int i = 0; i < nums1.length; i++){ res[i] = nums1[i]; } for (int i = 0; i < nums2.length; i++){ res[i + nums1.length] = nums2[i]; } Arrays.sort(res); return res.length % 2 == 0 ? (double) (res[res.length / 2] + res[res.length / 2 - 1]) / 2 : res[res.length / 2]; } }
|
官方解题代码
二分查找
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
| class Solution { public double findMedianSortedArrays(int[] nums1, int[] nums2) { int length1 = nums1.length, length2 = nums2.length; int totalLength = length1 + length2; if (totalLength % 2 == 1) { int midIndex = totalLength / 2; double median = getKthElement(nums1, nums2, midIndex + 1); return median; } else { int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2; double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0; return median; } }
public int getKthElement(int[] nums1, int[] nums2, int k) {
int length1 = nums1.length, length2 = nums2.length; int index1 = 0, index2 = 0; int kthElement = 0;
while (true) { if (index1 == length1) { return nums2[index2 + k - 1]; } if (index2 == length2) { return nums1[index1 + k - 1]; } if (k == 1) { return Math.min(nums1[index1], nums2[index2]); } int half = k / 2; int newIndex1 = Math.min(index1 + half, length1) - 1; int newIndex2 = Math.min(index2 + half, length2) - 1; int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2]; if (pivot1 <= pivot2) { k -= (newIndex1 - index1 + 1); index1 = newIndex1 + 1; } else { k -= (newIndex2 - index2 + 1); index2 = newIndex2 + 1; } } } }
|
划分数组
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
| class Solution { public double findMedianSortedArrays(int[] nums1, int[] nums2) { if (nums1.length > nums2.length) { return findMedianSortedArrays(nums2, nums1); }
int m = nums1.length; int n = nums2.length; int left = 0, right = m; int median1 = 0, median2 = 0;
while (left <= right) { int i = (left + right) / 2; int j = (m + n + 1) / 2 - i;
int nums_im1 = (i == 0 ? Integer.MIN_VALUE : nums1[i - 1]); int nums_i = (i == m ? Integer.MAX_VALUE : nums1[i]); int nums_jm1 = (j == 0 ? Integer.MIN_VALUE : nums2[j - 1]); int nums_j = (j == n ? Integer.MAX_VALUE : nums2[j]);
if (nums_im1 <= nums_j) { median1 = Math.max(nums_im1, nums_jm1); median2 = Math.min(nums_i, nums_j); left = i + 1; } else { right = i - 1; } }
return (m + n) % 2 == 0 ? (median1 + median2) / 2.0 : median1; } }
|